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Summary
To explain the nature of genetic variability for quantitative traits

In Infinitely large natural populations, a model Involving step-wise
mutation with discrete allellc effects and stabilizing selection of optimal
type Is considered. When the number of alleles at a locus Is taken as
finite Instead of an Infinitely large number, the properties of the,
equilibrium seem to change. In particular, cases of up to fifteen alleles
at theJocus are discussed In detail. The results obtained are more general
and encompass on the one hand Turelll's [22J findings based on the
'house ofcards' approximationforstrong selectionand on the other the
results of the normal approximation for weak selection. The results of
Slatkln 121] based on a five alleles approximation for Intermediate
selecUon are also made more exact by solving the set of recurrence
equations without assuming that the outermost alleles are negligible In
frequency. The results obtained bring out clearly the behaviour of the
genetic variability and heterozygbslty at equilibrium as the ratio of
mutation and selection parameters change from very low values to very
high values. It seems the number of alleles considered at each locus
could be a crucial factor In mutation-selection balance equilibria In large
natural populations unless selection forces are sufficiently large that no
more than two alleles can segregate at the locus.

Key words : Discrete mutation, stabilizing selection, genetic
variability.

Introduction

Experimental Investigations on natural populations of several
organisms have indicated abundant genetic variation for most of
quantitative traits. To explain the nature of this genetic variability,
mathematical analyses based on different models have been
attempted by different workers since 1920s. One ofthe mechanisins
proposed is the balEinclng between forces ofstabilizing selection and
mutation. The former acts against deviants from an optimal value,
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and so eliminates genetic variablUly. The latter provides new
deviants restoring this variability and leading to an equilibrium. For
Infinitety large populations (i.e. with no random drift), the models
differ in the number of alleles at a locus, the mutation scheme and
the nature of time, parameter. Di-allelic multi-locus models were
investigated by Latter [11] [121, Bulmer [3) [4] and Barton [1]. This
led to the conclusion that the equilibrium genetic variance is
independent of the allelic effects but depends on the mutation rate,
intensity of selection and the number of loci. The infinitely many
alleles model introduced by Kimura [7], on the other heind,
considered a continuous time parameter where alleles are
distinguished according to the distribution of their additive effects
and their fi-equencies do not enter into the analysis. At equilibrium
the distribution of effects is Gaussian with genetic variance
depending upon the mutation rate, the variance of the mutational
change, the intensity of selection and the number of loci. On the
basis of Kimura's [7] results, Lande [9] [10) assumed that the
distribution of allelic effects at all loci is multivariate normal and

analysed mutation-selection balance ofa single character as well as
multiple characters in terms of mean vector and covarlance matrix
of the distribution. Turelli [22] introduced an alternative 'house of
cards' approximation for such a problem. Based on the premise that
the variance of the mutational effecte at a locus is much larger than
the genetic variance at that locus, such an approximation led to the
prediction of equilibrium genetic variance which Is identiceil to that
of the diallelic model, thus indicating that the equilibrium genetic
variance is independent of the number of alleles considered at a
locus. The mutation-selection model of Leinde's kind was also

considered by Fleming [5] who found an approximation to the
equilibrium density of gametic types on the assumption that the
forces ofmutation and selection are weak relative to recombination.

Nagylaki [13] calculated several functionals of this equilibrium
solution and discussed the range ofvalidity of the approximations.

A discretized version of the continuum-of-alleles model of

Kimura [7] was given by Naraln and Chakraborty [16] [17], Slatkln
[21] and Narain [14] [15]. The mbdel ofNarain and Chakrabprly [16]
[17] was essentially a step-wise mutation model with discrete allelic
effects and stabilizing /selection. While the number of alleles
considered was taken as infinitely large, it was indicated therein, in
discussion, that when we consider a finite number of alleles, it is
possible to produce Turelli's [22] results based on the 'house of
cards' approximation. Slatkln [21 ]also used the step-wise mutation
modelTjut introduced useful approximations for most parameter
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values ofInterest encompassing at one extreme, the 'house of cards''
approximation for strong selection, ^d at the other, the normal
approximation for weak selection relative to mutation. He also
discussed a five alleles approximation for intermediate selection and
explored the effects of varying degrees of dominance on a
quantitative character as well as of directional selection imposed on
a population already at equilibrium under stabilizing selection.

In this paper, we consider in general the case ofa finite number
of alleles at the lotus, including cases up to fifteen alleles, and show
how the published results fit into this general framework. We
assume throughout that linkageidisequiUbria are negligible and
mean of the character coincides with the optimum. The problem of
mutation-selection balance for quantitative characters can then be
reduced to that of a single locus, as adopted in this paper. Amore
recent analysis of mutation-selection balance for quantitative
characters by Keightley and Hill [6] emphasises consideration of
several characters simultaneously to Include pleiotropy. However,
we restrict ourselves in this paper to a single character and propose
to take the multivariate problem later.

2. On Methodology

In order to study the statistical properties of equilibrium
distribution under mutation-selection balance for quantitative
traits, one could adopt several alternative approaches. One is to
model the recursion equations for gene frequencies themselves and
obtain the allele frequency profile. This was done in Narain and
Chakraborty [16] [17] for the step-wise mutation model with one
possible mutational step i.e. m = 1. The second approach to model
the recursion equations for moments was also used in this work
when m is greater than one. The moments of the allelic effects as
well as genotypic efiects were obtained, in particular, for the even
order moments. It was noted then that the recursion equations for
moments at a particular leveldepend on the higher order moments.
For instance, the change in the second moment depends on the
second as wellas fourth moment. Thesecond alternative approach
was given a general treatment in Barton & Turelli [2] and came to
be knovmas adaptive landscape approach (Turelli &Barton, [23]).
Athird and simpler alternative approachwasprovided byPrice [20]
using Price [18] [19] equation. However, it is now recognized that
the secondand third approaches, invoMng recursionequations for
themoments ofallelic effects, would beuseful only when thehigher
order moments are expressible as simple functions of lower order

I t
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moments so that the recursloii equations become a closed/system.
In Naraln and Chakrabortj' (16) 117], Barton and Turelll [2] and
Turelll and Barton 123), normal and house-of-cards approximations
provided a way toclose thesystem butthenthis approach obscures
thedynamic natureoftheprocess. Ultimately, therefore, one has to
adopt thefirst approach andmodel thechanges inallele frequencies
directly. This is themethod we have mainly usedin this paperalso.

3. Step-WiseDiscrete MutationModel

For a given locus, letAi represent an allele occupying state i{any
integer number from -oo to ») and having an allelic effect of ia. as
shown in Fig. 1.

—I—

-ma -2 a

ALLELIC STATE

-a

—I—

2a

PHENOTYPIC EFFECT

—r-

ma

Fig. 1.Discrete alleilc-state model used Inthis paper. Inthis model allele Ai
mutates toAi+r with probability Or (- a-r). Allele Ai hasa phenotyplc effect ofal.

We assume that all alleUceffects are additive with no domii^nce
and noepistasis and that once Ai mutates, it changes to allelic state
Ai+r with probability :

2m

<m-r'

ar = 0, otherwise

m

2
\

for 0 s r s m

(1)

where m is the possible number of mutational steps. The
distribution is a shifted binomialwith mean zeroand variance m/2.
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IfVdenotes the mutation rate, the absolute probabUity ofsuch a
mutation would be va,. Thus, an allele that mutates has the same
aUelic effect as thatofthe original allele with probabilityvaQ. sothat
in the conventional definition, the real mutation rate v' would be
given byv' - (1- ao)v. Theper generationIncrementofthe variance
ofalleUc effect bymutation is thenvmaV2. This ishapioid variance
the corresponding value for diploids would be vma^

4. Stabilizing Selection of Optimal Type

Selection operates on the total phenotypic valuex. In order to
obtain the mean fitness ofthe Individual with a given genotype, we
assume that all genotypes experience the same environmental.
variance Og. The fitness function for the character value x is
assumed to be (iaussian:

w(x) = exp
(X-Xopt)"

2a?W (2)

where the character assumes the optimumfitness x^^^ atx=x^ ând
is the width of the function indicating the rate at which fitness

declines with deviation ofx fi-om the optimum, Taking Wniax=l. the
mean fitness ofthe individuals with genotype AjA, having g^notypic
value a(i+j), jwrould be \

Wjj a exp -s a(l+j)-Xopt
2

(3)

where s-^ (o^+ Og) indicates the strength of the selection at the
group level, Alarge means weak selection ofthe stabilizing type.

I,

5. Recurrence Relations and Equilibrium

Ifxi(t) denotes thefi-equency ofallele Ai ingeneration t with allelic
effect aiand ifwe take the optimum phenotype to be at the origin
i;e. Xopt = 0, an individual of genotyrc AiAj will have a mean
reproductive fitness Wy =exp (-sa'̂ (i+jf] and thus, the change in
gene fi-equency ofAi from generation t to (t+1) is given by
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w(t)xi(t+ 1) = (1- v+ voo) 2 Xi (t) Xj (t) expl- sa' (i+ if]
J

+V2 "r [2 expj-sa'̂ (i+ j+ r)'
r-l

+Xi_r (t) expl- sa^ (i+ j+rf (4)

where w(t) is the meanfitness ofindividuals at the locus in the t-th
generation so adjusted as to make ^ Xj (t) = 1.

J

In general, this recurrence relationship does not yield any
explicit solution. However, for m=l it is possible to derive the
equilibrium allele firequ^cy profile by neglecting powers ofvand s.
Then, the mean fitness w(t) is approximated as

w(t) = 1- s a| (t) (5)

where Og (t) is the total genolypic variance contributed by this locus,
at time t and is given by

o|(t)=
1 J

(6)

Since the optimum is at the origin, we have initially
xi(0)= x_i(0). Then for all i. xi(t)=x_i(t) of each generation, this
property being invariant to the transformation (4). From the
symmetry of the model, we expect the equilibrium to be globally
stable for m=l. In this case (4) reduces to

xi (t+ 1)= I [Xi+l(t)+ Xi.i(t)l +Xi(t)

On ire-arrangement, we get

Axi(t) = Xi(t+ 1)-Xi(t)

Xi+l(t)+ Xi_i(t)"
- - V Xi(t)-

1^ V- s

+ SXi(t)

22_,^W
^ 2 (7)

(8)
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When the population reaches equilibrium under the opposing
pressures ofmutation andselection, Axi= 0. Inthiscase, a complete
solution for theallele frequency profile isgiven in the Appendix Aof
Narain and Chakraborty [17). The heterozygosity (He) is thengiven
by 6*

He= 1-x§-22j^
(9)

m-step mutatlonal changes

Inthegeneral case ofm-step mutational changes, themoments
of the allelic effects as well as those of genotypic effects can be
obtained analytically under optimum selection and the same
assumptions for v and s as those used for m= 1. Denoting the k-th
moment of the distribution of alleUc effects at a locus in the t-th
generation by

Mk(t)=2 a'-iVt).
1—CO

(10)

the recurrence relationship for the even order moments is
approximately given by

AM2K(t) - -v >-o 2

+s

2m

M2k(t- 1)

•M2(t- l)M2k(t- D- M2k+2(t- 1)

^ m 2m

1=0 r-l

,2k- 21(ar)

(11)
The above result on recursion equations for moments ofallelic

effects can be directly obtained with the help of Price[ 18][191
equation. Ifz denotes the population average ofa characteror for'
that matter z can be any other function (squsire, cubic, quadratic
etc.) ofa character value, the Price equation is given by

w Az = Cov(w, z)+ E(wA z)
(12)
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where the first term on the right hand side Indicates the effect of
selection (the relationship between fitness and character value)
whereas the second term gives the effect of mutation (due to
transmission of characteristic fi-om parents to ofifepring). For the
dynamics ofthe2k-th non-central moment ofthecharacter z. this
becomes

w Az®'' = Cov(w, z®'')+ E(wA (13)

In the context of the problem under consideration, z is ai for
effectofalleleAj and, assuming additivityofeffects, is a (i+j) for the
genotype ^Aj. whereas wis approximated by 1- sa^ (i+ j)^. It can be
shown that

-2k+ 2 1Cbv(w. = s r z^" - z'

k

E(wA z^^)= - v(l- ao)z'̂ ''+ 2v ^ ar ^ (2^ z'̂ '(ar) '̂'
r-l 1-0

-lar,-

.2k

(14)

(15)

Combining the two. using (13). approximating, replacing z by
M2k for t-th and (t-1).thgenerations, aridnotingthe valueofar given
by (1). we get (11).

The change ofvariance ofallelic effects at generation t, AMaCt) is
then given by

AMaCt) = + s[M2(t)-M4(t)l. ^0^

indicating that it depends on the fourth moment and therefore
cannot leadto any solution. The system could, however, be closed
by normal approximation where we have

M4 = 3M2 leading to

AM2(t) =^ - 2sM|(t)

= 2s
mva^
— - M2(t) (17)
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At equUibrium In such a case, therefore.

Ma
mva'

21

4s

1/2

(18)

Thegenotyplc varianceat a locus in the equilibriumpopulation,
being 2M2, is then

-1^
mva'^'

1/2 1/2

s s (19)

being the per generation incremental variance due to mutation.

This result is identiceil to that of Kimura 17] even though his
model assumes continuous time parameter and a continuous
distribution ofallelic effects. Such an equivalence lends faith in the
step-wise mutation model as a more realistic model even though it
may not have any intrinsic biological interest.

6. Equilibrium with a Finite Number ofAlleles

Let us now consider, for m=l, a finite number (2k+l) alleles
A_k, A.(k- 1) A_i. Ao. Ai A(k- 1), Ak at each locus. The
change in the fi-equency of i-th allele then becomes

Axi(t) = -V Xl(t) 1-
Xk(t)+ X_k(t) Xi+i(t)+ Xi_i(t)

+ sx,(t) 2aYxj(t)+2
j-k

2 ajxj(t) - a^i^- 2ai J ajXi(t)
j-k j-k (20)

When the population reaches equilibrium, Axi(t) = 0 giving
Xi= x_i for each i, the equilibrium mean is zero and we have with

k

2 ^ Xi = 1,
1-1

A . X1+I+ Xl_l
Xl(l-Xk)-

A

= SXi V ^2.2 ^ „2,22, a j Xj- a i
J-k

.1=0, 1, 2 k

(21)
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This general result can be studied either for a general k-value
or for each value of k separately.

In the former case, equation (21) can be re-arranged to give

^ \ ^ 2s r 2.2 21(:jq+i- 2xi+ Xi_i)+ 2xpck= — [a 1- o£] jq
(22)

where is the haploid equilibrium variance at the locus, being ^
and is therefore given by

Oh = a'' 21 ^ °
J J (23)

2^

The first term on the left of (22) can be approximated as —^ so
di

as to give the following differential equation

d^x,
di^

+ 2 Xj = 0
(24}

For the infinitely many alleles case, there is no term involving
Xk in this equation which then reduces to Weber equation given by
Kimura (1965) for the continuum-of-aUeles model. The solution of
the differential equation, in this case, gives rise to a normal
distribution for equilibrium allele fi-equency given by

a¥^
Xi = 1/2i2Kot)

exp
. 2 Oh (25)

This result ofKimura [7] is, however, true fcr a? « (v/2s) when
we have weak selection and mutation is a much stronger force. If
we put

P
2sa' (26)

this condition becomes p »1. The equilibrium value of Og is then
approximately
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o|(GA)= 2 -2 V
2s

1/2

2v\

. 1/2

2a® Vp

181

whiere GA in parenthesis stands for 'Gaussigin Approximation'.

Expressing inunits of 4a^,

' al (GA) ^
4a® " 2 (27)

The house-of-cards approximation due to Turelli [22] in which
selection is a much stronger force than mutation, is based on the
reverse condition of a^ >> (v/2s) i.e. p << 1 and leads to :the
equilibrium genetic variance

o®(HCA)
2v

where HCA in parenthesis stands for 'House-of-Cards
Approximation'.

Expressing in units of4a^

(HCA)

4a^
P (28)

which agrees with the result ofdiallelic case (Bulmer, [3]) as wellas
triallelic case (Turelli [22]; Narain & Chakraborty [17]; Slatkin[21]).

(a) Three alleles

For k=l. we have three alleles A-i,^Ao, Ai with respective
equilibrium frequencies Xi = x_i and 3^ so that in view of

2xi= 1 we have only one unknown say xi to be determined from
equations (21) with k=l i.e.

v[Xo (1- Xi)- xil = sxo [2a® Xij

Xi (l-Xi)--^ ^ 2 2i
sxi [2a Xi- a ]

(29)
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Eliminating Xo leads to the quadratic equation inxi given by

2(1+P) Xj-(1+4p) Xi+p - 0 (3Q)

This gives two roots

- (1+4P)±(1+8PV"'
Xl

4 (1+ P) (31)

the permissible root being one with Xj s ^ otherwise ^ would be
A

negative.

Fo p « 1, we have approximately one permissible root as

V

(32)
Xl - p

2sa®

The equilibrium genetic variance at the trl-allelic locus can then
be shown to be equed to

a| = 2a^ r3^ (1-^)+ 4xi jLi

Expressed in units of 4a^,

4a^
Xl

2sa'

P

The heterozygosity in this case is given by

He= 2p(2-3p)

= 4p

(33)

(34)

(35)
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For n loci, under the assumption ofapproximate global linkage
equilibria, we then have

Vg= 4Jv,(<^Ve) - i 2(vi/s)
1-1 1-1 (36)

In the notation of Turelli [22], Vs = o? = 1/2s so that (36)
corresponds exactly to the relation (3.29) of his paper. Further, the
condition P« 1 amounts to v« 2sa^ = a^/Vs which corresponds
exactly to the relation (3.27) in Turelli [22]. This is the same
condition which leads to the house-of-cards approximation already
stated in (28). As such, the anatysis of a model with tri-allelic loci
reported in TureUi [22], givingthe house-of-cards prediction for the
equilibrium genetic.variance, happens to be a particular case of the
step-wise discrete mutation model with m=l eind k=l.

[h)Five alleles

For k = 2, we have now five alleles /La, A.^, Ai and A2 with
respective equilibrium frequencies X2 = x_2 , Xi= x_i and Xo so that
in view of

2(xi+X2)= 1. (37)

we have two unknowns say Xi and Xg to be determined from
equations (21) with k = 2 i.e.

v[j^ (1- X2)- Xil =sj^ [ 23^^ (Xi+ 4x2)] (38)

= sxi [2a® (xi+ 4x2)- a'l
A A ^ X2+ Xo
Xl (I-X2)-—^

A

X2 (l-X2)-y SX2 [2a® (Xi+ 4x2)- 4a®1

(39)

(40)

Expressing Xo in terms ofxi and X2 in (38), gives

2X1+ 20+ 4) x| + 2(P+ 5) XiX2_ (1+ 3p) Xi ~ (4+ 3p) X2+ p = 0
(41)
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whereas from (40), Xj canbeexpressed Interms of3^ as

^ (P+2)x2- (P+4):^

^Eliminating Xi between (41) and (42) leads to a cubic equation
in X2 given by

4(P^ 6f+ 12P+ 12) ^ - 2(6p^ 23p^ 20p+ 12) ^

+P(9pV 14P+ 4) X2- P^ = 0 (43)

We examine the positive and permissible roots ofthis equation
which are consistent with (37). It is obvious from (37) that, in order
that xo should be positive, the sum ofthe roots. xi and X2 should be
less than 0.5. This is sattefied for that pair of roots, out of the two
possiblepairs, forwhichxi has a value less thaii 0.5. This therefore,
gives rise to only one unique root forxi and X2. For different values
of p say from p=0.02 to p=100, such values of the roots as well as
the corresMnding genetic variance in equiUbrlum. expressed in
units of 4a and given by

= Xi+ 4X2
4a (44)

are worked out numerically. The hetero^gosity given by

He= 1- Xo- 2(xi + 3^) (45)

is also determined numerically. The results are given in Table 1.

It is apparent from this table that the equiUbrium genetic
variance is close to ponly when p is very small. The value ofpas we
have seen is the genetic variance with three alleles as well as under
house-of-cards approximation given byTureUi[22]. Infact for pclose
to zero, this result holds almost exactfy for fivealleles also. Butwhen
Ptakes moderate values greater than 0.1 but still less than 1.0. the
equilibrium genetic variance under five alleles case is much smaller
than that predicted under three allelecase. For p=0.9, tills reduction
Is as high as 55 per cent. The results In this table also Indicate the
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Table 1.Oene frequencies, Genetic variance [yl and Heterozygoslty [Hel at
equlUbrlumwith five alleles

p
" 1
*1

A

*2 Y He

0.02 0.0192 0.0001 0.0196 0.0746

0.03 0.0284 0.0002 0.0293 0.1082

0.04 0.0367 0.0004 0.0382 0.1395

0.05 0.0453 0.0006 0.0475 0.1687

0.06 0.0531 0.0008 0.0563 0.1959

0.07 0.0608 0.0011 0.0651 0.2213

0.08 0.0681' 0.0014 0.0735 0.2450

0.09 0.0751 0.0017 0.0818 0.2670

0.10 0.0818 0.0020 0.0899 0.2876

0.20 0.1347 0.0066. 0.1611 0.4322

0.30 0.1685 0.0122 0.2172 0.5083

0.40 0.1906 0.0179 0.2621 0.5513

0.50 0.2053 0.0234 "0.2991 0.5773

0.60 0.2154 0.0287 0.3302 0.5942

0.70 0.2226 0.0336 0.3569 0.6058

0.80 0.2278 0.0381 0.3803 0.6141

0.90 0.2316 0.0423 0.4009 0.6203

' KOO 0.2344 0.0462 0.4194 0.6250

2.00 0.2427 0.0731 0.5363 0.6436

2.30 0.2429 0.0784 0.5565 0.6456

2.40 0.2429 0.0800 0.5627 0.6462

2.50 0.2429 0.0814 0.5686 0.6467

2.60 0.2428 0.0828 0.5742 0.6471

3.00 0.2425 0.0878 0.5936 0.6486

5.00 0.2402 0.1030 0.6522 0.6522

10.00 0.2370 0.1171 0.7053 0.6547

20.00 0.2348 0.1251 0.7353 0.6558

40.00 0.2335 0.1295 0.7513 0.6563

60.00 0.2330 0.1309 0.7568 0.6565

80.00 0.2328 0.1317 0.7595 0.6566

100.00 0.2326 0.1321 0.7612 0.6566
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values ofpfor which the five alleles caseprovides values close tothe
house-of-cards approximation by using the criterion that xg must
be sufficiently small as adopted by Slatkin 121]. With pal
corresponding to the situation when mutation is a much stronger
force than selection inmaintaining the gpetic variability, itisfound
thattheequilibriumfrequency ofAi (i.e. Xi). which usuaUy increases
with p. becomes approximatelystationary aroundpclose to2.5and
starts decreasing thereafter. The values ofx2 are now not negligible
and the equilibriumgenetic variance for five alleles case is distinctly
different from the three alleles case. Tliis is also not close to Vp^/2,
the value predicted under the normalapproximation due to Kimura
[7J.

(c) More thanJive alleles

For k>2, the algebraic manipulation of equation (21) becomes
formidable. We therefore have to resort to numerical iterations of
the equations. This wasdone fork =3. 4. 5. 6 and 7. The numerical
results for the equiUbrium genetic variance (y) and heterozygosity
(He) are shown inFigures 2and 3using a log scale for p. The graphs
fork =1and 2 correspondingto 3 and 5 alleles cases are also drawn
for the sake of comparison.

It is apparent fromFigure2 that in aU the cases of3 to 15 alleles
considered,the equilibriumgeneticvarianceincreases withincrease
in the value ofp. Initially, for smallervalues ofp, such increases are
linear with a slope equal to p itself irrespective of the number of
alleles. This confirms the contention of Turelli [22]. But for higher
values of p, the curves are characteristic in increases and depend
on the number ofalleles considered. The^ curve for 3 alleles case
departs from the rest of the curves arojiiid p = 0.1. The curvefor 5
alleles case departs from the rest of 5 ^rves for 7, 9, 11, 13 and 15
alleles at around p = 0.5. Asimilar pattern is observed as we move
onto curves for higher number ofaUeles. After the bifurc^ion each
curve increases in a characteristic manner. In the literature p=1.0
is taken as the threshold below which, two alleles approximation
iiolds and above which normal approximation is assumed. Our
results however show that close to p=l, even three alleles
approximation differs from the two alleles one and there are
signiticantvariations inthebehaviourabove p= 1. The highestvalues
are found for the 15 alleles case and the lowest for the 3 alleles case.
The values for k=7 corresponding to 15 alleles case indicate
closeness to the limiting value ofVp/2 given by Kimura [7].
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Fig. 3.Variation of equlUbrlum genetic variance In units of 4a® with p(plotted on
a logscale) ibr different number of alleles.
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Fig. 3. Variation of heterozygosltyat equUlbrlumwith p (plotted on a logscale) for
different nuint)er ofalleles.
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To see it more clearly we present the variation in equilibrium
variance with Increase in the number of alleles for a few selected
values of p in Table 2.

Table 2. EquUlbrtum geneticvariance[yl and hetero^goslty [Hel fordifferent
number of alleles at few selected values of p

Number

of alleles

P

0.1 1.0 5.0 20.0 50.0 100.0

3
0.0820

0.2876

0.2500

0.6250

0.2843

0.6522

0.2907

0.6558

0.2920

0.6564

0.2925

0.6566

5
0.0900

0.2939

0.4194

0.6934

0.6522

0.7651

0.7353

0.7799

0.7546

0.7828

0.7612

0.7837

7
0.0901

0.2940

0.4603

0.7001

0.9330

0.7984

1.2573

0.8304

' 1.3563
0.8373

1.3929

0.8395

9 •
0.0902

0.2940

0.4647

0.7004

1.0510

0.8058

1.7171

0.8530

2.0151 .

0.8658
2.1412

, 0.8703

11
0.0902

0.2940

0.4649

0.7005

1.0803

0.8070

2.0090

0.8617

2.6128

0.8811

2.9249

0.^85

13
0.0902

0.2940

0.4649

0.7005

1.0852

0.8071

2.1426

0.8644

3.0511

0.8886

3.6407

0.8993

15
0.0902

0.2940

0.4649 .

0.7005

1.0858

0.8071

2.1885

0.8650

3.3086

0.8917

4.2016

0.9053

The figures In bold face refer to heterozygoslty [Hel

The equilibrium variance of 0.46 for 15 alleles when p is 1.0 is
close to V^/2=0.50 as predicted under the infinite aUelBs-case by
Kimura [7]. Similarly, for p as high as 100.0, the variance for 15
alleles is 4.20, smaller than Vp/2=5.0. The differencer^ho^ever, is
not veiy great.

In so far as heterozygoslty is concerned. Figure 3 indicates
clearly that it also increases with the increase in the value of p but
in a characteristic manner depending on the number of alleles.
Initially, the increase is rapid and does not depend on the number
of alleles considered. But for higher values of p, the curves behave
in a characteristic manner. Thepiattem ofone curve bifurcatingfrom
the rest of the remaining curves at a particular value of p noticed
for the equilibrium genetic variance Is also observed for the
heterozygoslty. Thecurves seem to stabilize at the values depending
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upon the number of alleles considered. This can also be seen from
Table 2. For instance, when weconsider 7 alleles, the heteroj^rgosity
is close to 83-84 per cent for p lying between 20 and 100. For the 3
alleles case, however, it is around 66 per cent for the same range of
values of p. When we consider smaller values of p say p=0.1, the
heterozygosity is 29 per cent throughout, irrespective ofthe number
of alleles considered.

7. Discussion

The dynamics of genetic variability for quantitative traits is an
outstanding problem for which various mathematical models have
been invoked and alternative approximations have been discussed.
Mutation-selection equilibria in such a case determined so far
assume either two alleles per locus or an infinitely large number of
alleles per locus, with either continuous or discrete allelic effects.
Different approxiaiations lead to different results and their relative
merits depend on empiricEil results pertaining to the magnitude of
mutation rates and selection coefficients for quantitative chsu-acters
as well as to the distribution of effects of Inew mutation. In this

context recently interest has been generated on the step-wise
discrete mutation model [Nsirain & Chsikraborty [16] [17] ]; Slatkin
[21] in which at the underlying locuis, an infinite or finite number
ofalleles Ai(i=0, ± 1, ±2,...) is possible with allele Aihaving additive
effect ai on a quantitative character and mutation occurs according
to a shifted binomial distribution. While studying such a model with
stabilizingselection, Narain & Chalaaborty [17] could reproduce the
results of Turelli [22] based on house-of-cards approximation by
considering three alleles at each locus. In this paper, this approach
has been extended up to fifteen alleles case.

The numerical results obtained here are more general in that
these are not restricted to a given number of alleles and cover all
the cases of selection, weak or strong. When the selection is stronger
than mutation i.e. p «1, and we consider five alleles case, we find
from Table 1 that the equilibrium firequency of X2 is very close to
zero and the five alleles case reduces to the three alleles case. The
equilibrium genetic variance is found to be close to the value of p
which it should take fi-om (34). This is also found to be true for the
cases of 7 to 15 alleles. In fact, when the force of selection is quite
strong, no more than two alleles can segregate at the locus. These
results, as already noted, are similar to those of Turelli [22] who
used 'house-of-cards' approximation after Kingman's [8]
house-of-cards model of mutation to produce results of Kimura [7]
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and of three alleles approximation. Since the equilibrium genetic
variance is found to be the same as with two alleles case, he came
to the conclusion that the variance at equilibrium is Independent of
the number of alleles considered. Our results confirm this
conclusion. But when p takes larger values, we find that we cannot
afford to neglect frequency of alleles other than Xi at equUibrium.
The five or more alleles case c^not then reduce to the three alleles
case. The equilibrium genetic varisince is now loWer than p
substantially.

The five alleles approximation of Slatkin [21] is based on the
situation when selection and mutation balance in such a manner
that X2«l at equilibrium. In the present paper, this restriction is
not imposed to solve the set of recurrence relations. Weare therefore
able to extend Slatkln's [21] anafysis and get results as presented
in Table 1 for the intermediate situation of selection when both the
forces are ofcomparable magnitude. For such a case, ifwe assume
that X2 « 1 at equilibrium as in, Slatkin [21] we reproduce, using
(38)-{40), his results for xi which clearly increases from a smaller
value to about 0.23. But as against Slatkln's [21 ] analysis in terms
of bounds of xa, Xi and (v/s), we hav^ now numerical results
indicating how the equilibrium genetic variance behaves as p
changes. This seems to point out that the number of alleles
considered at each locus could be a crucial factor in mutation-
selection balance equilibria unless p is very small.

For higher values of p, the genetic variance increases with the
number of alleles, and approaches asymptotically the value
predicted under the infinite alleles case. The equilibrium
heterozygosity in such a case also increases. For p=100.0 and 15
alleles, as seen from Table 2, it can be as high as 90 per cent.

The results obtained in this paper thus indicate how the
approximate solutions of Kimura [7], Turelli (22), Narain &
Chakraborty (17] and Slatkin [21] fit in the general case of any
number of alleles eind weak as well as strong selection.
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