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Summary

To explain the nature of genetic variability for quantitative traits
An infinitely large natural populations, a model involving step-wise
mutation with discrete allelic effects and stabilizing selection of optimal
type i1s considered. When the number of alleles at a locus is taken as
finite instead of an infinitely large number, the properties of the,

equilibrium seem to change. In particular, cases of up to fifteen alleles
atthelocus are discussed indetall. The results obtained are more general
and encompass on the one hand Turelli's [22] findings based on the
/house of cards’ approximation for strong selection and on the other the
results of the normal approximation for weak selection. The results of
Slatkin (21] based on a five alleles approximation for ‘intermedlate
. selection are alsc made more exact by solving the set of recurrence
. equations without assuming that the outermost alleles are negligible in
frequency. The resuits obtained bring out clearly the behaviour of the
genetic varlability and heterozygosity at equillbrium as the ratio of
mutation and selection parameters ché:ige from very low values to very
high values. It seems the number of alleles considered at each locus
could be a crucial factor in mutation-selection balance equilibria in large
natural populations unless selection forces are sufficiently large that no

more than two alleles can segregate at the locus.

: Key words : Discrete mutation, stabilizing selectlon. genetic

variability.

I ntroductioh

Experimental investigations on natural populations of several
organisms have indicated abundant genetic variation for most of
quantitative traits. To explain the nature of this genetic variabihty.
mathematical analyses based on different models have been
attempted by different workers since 1920s. One of the mechanisms
proposed is the balancing between forces of stabilizing selection and
mutation. The former acts against deviants from an optimal value,
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and so eliminates genetic variability. The latter provides new
deviants restoring this variability and leading to an equilibrium. For
infinitely large populations (i.e. with no random drift), the models
differ in the number of alleles at a locus, the mutation scheme and
the nature of time parameter. Di-allelic multi-locus models were
investigated by Latter [11][12], Bulmer [3] [4] and Barton [1]. This
led to the conclusion that the equilibrium genetic variance is
independent of the allelic effects but depends on the mutation rate,
intensity of selection and the number of loci. The infinitely many
alleles model introduced by Kimura [7], on the other hand,

considered a continuous time parameter where alleles are
distinguished according to the distribution of their additive effects
and their frequencies do not enter into the analysis. At equilibrium
the distribution of effects is Gaussian with genetic variance
depending upon the mutation rate, the variance of the mutational
change, the intensity of selection and the number of loci. On the
basis of Kimura’s [7] results, Lande [9] [10] assumed that the
distribution of allelic’ effects at all loci is multivariate normal and
" analysed mutation-seléction balance of a single character as well as
multiple characters in terms of mean vector and covariance matrix
of the distribution. Turelli [22] introduced an alternative ‘house of
cards’ approximation for such a problem. Based on the premise that
the variance of the mutational effects at a locus is much larger than
the genetic variance at that locus, such an approximation led to the
prediction of equilibrium genetic variance which is identical to that
“of the diallelic model, thus indicating that the equilibrium genetic
variance is independent of the number of alleles considered at a
locus. The mutation-selection model of Lande’s kind was also
considered by Fleming [5] who found an approximation to the
equilibrium density of gametic types on the assumption that the
forces of mutation and selection are weak relative to recombination.
Nagylaki [13] calculated several functionals of this equilibrium
solution and discussed the range of validity of the approximations.

A discretized version of the continuume-of-alleles model of
Kimura [7] was given by Narain and Chakraborty [16] [17], Slatkin
[21]and Narain [14](15). The model of Narain and Chakraborty [16]
[17] was essentially a step-wise mutation model with discrete-allelic
effects and stabilizing / selection. While the number of alleles
considered was taken as infinitely large, it was indicated therein, in
cl_is_cussion that when we consider a finite number of alleles, it is
possible to produce Turelli's. [22] results based on the ‘house of
cards’ approximation. Slatkin {21] also used the step-wise mutation
-model but introduced useful approximations for most parameter
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values of interest encompassing at one extreme, the ‘house of cards’
approximation for strong selection, and at the other, the normal
-approximation for weak selection relative to mutation. He also
discussed a five alleles approximation for intermediate selectionand
explored the effects of varying degrees of dominance on a
quantitative character as well as of directional selection imposed on
a population already at equilibrium under stabilizing selection.

In this paper, we consider in general the case of a finite number
of alleles at the locus, including cases up to fifteen alleles, and show
how the published results fit into this general ‘framework. We
assume throughout that linkage: disequilibria are negligible and

mean of the character coincides with the optimum. The problem of -

mutation-selection balance for quantitative characters can then be
reduced to that of a single locus, as adopted in this paper. A more
recent analysis of mutation-selection balance for quantitative
characters by Keightley and Hill (6] emphasises consideration of
several characters simultaneously to include pleiotropy. However,
we restrict ourselves in this paper to a single character and propose
to take the multivariate problem later. : '

2. On Methodology

In order to study the statistical properties of equilibrium
distribution under . mutation-selection balance for quantitative
traits, one could adopt several alternative approaches. One is to
model the recursion equations for gene frequencies themselves and
obtain the allele frequency profile. This was done in Narain and
Chakraborty [16] [17] for the step-wise mutation model with one
possible mutational step i.e. m = 1. The second approach to model
the recursion equations for moments was also used in this work
when m is greater than one. The moments of the allelic effects as
well as genotypic effects were obtained, in particular, for the even
order moments. It was noted then that the recursion equations for
moments at a particular level depend on the higher order moments.
For instance, the change in the second moment depends on the
second as well as fourth moment. The second alternative approach
was given a general treatment in Barton & Turelli [2] and came to
be known as adaptive landscape approach (Turelli & Barton, (23]).
A third and simpler alternative approach was provided by Price [20]
using Price [18] [19] equation. However, it is now recognized that
the second and third approaches, involving recursion equations for
the moments of allelic effects, would be useful only when the higher
order moments are expressible as simple functions of lower order

|
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moments so that the recursion equations become a closed,system.
In Narain and Chakraborty {16] [17], Barton and Turelli [2] and
Turelli and Barton [23], normal and house-of-cards approximations
_provided a way to close the system but then this approach obscures
the dynamic nature of the process. Ultimately, therefore, one has to
adopt the first approach and model the changes in allele frequencies
_ directly. This is the method we have mainly used in this paper also.

3. Step-Wise Discrete Mutation Model

For a given locus, let A, represent an allele occupying state i (any
integer number from —» to ) and having an allelic effect of ia; as
shown in Fig. 1. '

ALLELIC STATE

-ma 2a -a 0 a 25 ma
PHENOTYPIC EFFECT

Fig. 1. Discrete alleiic-state model used In this paper. In this model allele Al
mutates to Ay.r with probability or (= &-r). Allele A; has a phenotypic effect of al.

We assume that all allelic effects are additive with no dominance
and no epistasis and that once A, mutates, it changes to allelic state
Ayr With probability : :

: 2m

l,a;= a_,=(2in)(%) fof Osrsm

o, = 0, otherwise ' | (1)

where m is the possible number of mutational steps. The
distribution is a shifted binomial with mean zero and variance m/ 2.
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If v denotes the mutation rate, the absolute probability of such a
mutation would be va,. Thus, an allele that mutates has the same
“allelic effect as that of the original allele with probability va,, so that-
in the conventional definition, the real mutation rate v’ would be
given by v' = (1~ ag)v. The per generation increment of the variance
of allelic effect by mutation is then vma®/2. This is hapioid variance,
the corresponding value for diploids would be vma?. :

4. Stabilizing Selection of Optimal Type

Selection operates on the total phenotypic value x. In order to
obtain the mean fitness of the individual with a given genotype, we

assume that all genotypes experience the same environmental

v'arianpcj o;?. The fitness function for the character value x is

assumed to be Gaussian: i

(X= Xopt)’]
- o X=Xept) | -
W(X) = Xmax €XP [ 20\2v ] - 2)

_where the character assumes the optimum fitness x ,, at X=X;prand
Oy, is the width :c)f the function indicating the rate at which fitness
declines with deviation of x from the optimum. Taking w,,.=1, the

mean fitness of the individuals with genotype A,A'1 having genotypic
value a(i+j), yvould b('e S

o o —— T

, |
Wy G exp -5 {al+ §)- Kopy] | @

wf}ere s% (0%+ o) indicates the strength of the selecfi'o,p at the

group level. A large o,, means weak selection of the stabilizihg type.

5. Recurrence Relations and Equilibrium

Ifx(t)denotes the frequency of allele A, in generation t with allelic
effect al and if we take the optimum phenotype to be at the origin
i.e. Xopt = 0, an individual of genoty Ay will have a mean
reproductive fitness wy = exp [~sa? (i+j)°] and thus, the change in
gene frequency cof A, from generation t to (t+1) is giver: by
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W(Ox(t+ 1) = (1- v+ vag) 3, % (B) ) (1) expl- sa® (i+ §)°]
J

+ '\.r 2 o, 2 Xy () [Xye(t) exp|-sa® (i+ J+ )’}

r=} i}
+ x,;, (t) exp|- sa® (i+ j+ 1)* } (4)

where W(t) is the mean fitness of individuals at the locus in the t-th

generation so adjusted as to make 2 x ()= 1
J

In general, this recurrence relationship does not yield any
explicit solution. However, for m=1 it is possible to derive the
equilibrium allele frequency profile by neglecting powers of v and s.
Then, the mean fitness W(t) is approximated as

w(t) = 1-sog (D) (5).

where oz (t) is the total genotypic variance contributed by this locus -

at time t and is given by

G2 (M= a Yy ¥ x )Xt G+ )
4 _ (6)

Since the optimum is at the origin, we have initially
%(0)= x((0). Then for all i, x(t)= x4(t) of each generation, this
property being invariant to the transformation (4). From the
symmetry of the model, we expect the equilibrium to be globally
stable for m=1. In this case (4) reduces to

- _
| Xy (t+ 1)=% (X1 D)+ X1 (D] + -x,(t)[ l-v-s {aziz--_%.@} ] (7)

On re-arrangement, we get

A x4(t) = % (t+ 1)- xy(t)

S B 2 Che m.l(t)] +Sx‘(t)[g§2(_t)__aziz] "
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When the population reaches equilibrium under the opposing
pressures of mutation and selection, Ax;= 0. In this case, a complete

, solution for the allele frequency profile is given in the Appendix A of

Narain and Chakraborty [17]. The heterozygosity (He) is then given
by

He=1-%-2Y 2 - ©

m-step mutational changes

In the general case of m-step mutational changes, the moments
of the allelic effects as well as those of genotypic effects can be
obtained analytically under optimum selection and the same
assumptions for v and s as those used for m=1. Denoting the k-th

-moment of the distribution of allelic effects at a locus in the t-th
generation by

My(t)= E a"i"){l(t),

 —

(10)

the recurrence relationship for the even order moments is
approximately given by

2m

AMak() = ~v [ - 3) ] Mau(t- 1)

+S[M2(t— DMay(t- 1)~ May,a(t- 1)]

k m 2m -

+2v Y G- 1) 3 (2 (;21—) (ary-
1=0 r=]

- (11)

The above result on recursion equations for moments of allelic
effects can be directly obtained with the help of Price[18])[19]
equation. If Z denotes the population average of a character or for *
that matter z can be any other function (square, cubic, quadratic
etc.) of a character value, the Price equation is given by

WA Z = Cov(w, z)+ E(WA 2) o ' (12)
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where the first term on the right hand side indicates the effect of
selection (the relationship between fitness and character value)
whereas’ the second term gives the effect of mutation (due to
transmission of characteristic from parents to offspring). For the
dynamics of the 2k-th non-central moment of the character z, this
becomes

W A 2% = Cov(w, z)+ E(WA z°%) (13)

In the context of the problem under consideration, z is ai for
effect of allele A, and, assuming additivity of effects, is a (i+j) for the
genotype AjA;, whereas w is approximated by 1-sa? (i+ j)2. It can be
shown that ' _

- Cov(w, z%) = s [oéﬁ—zz'“’] (14)
E(WA z%)= - v(1- a0)z®*+ 2v 2 a, 2 (o) z2(ar)® %
r1 10 (15)

Combining the two, using (13), approximating, replacing 2* by
Moy for t-th and (t-1)-th generations, and noting the value of a, given

by (1), we get (11).
The change of variance of allelic effects at generation t, AMo(t) is
then given by : : g

mva2

AMy(t) = 5

2
+ sIM3()- Ma(D)l, (16)

indicating that it depends on the fourth moment and therefore
cannot lead to any solution. The system could, however, be closed
by normal approximation where we have

. My = 3Mj3 leading to

2 .
AMy(t) = m;a, = 2sM3()

2 . '
= 2s[m"a - Mg(t)] ’ 17

4s
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At equilibrium in such a case, therefore,

172

My = | 4s

A [ mva®
(18)

The genotypic variance at a locus in the equilibrium population,
being 2Mjy, iIs then .

(19)

of,_, being the per generation incremental variance due to mutation.

This result is identical to that of Kimura [7] even though his
model assumes continuous time parameter and a continuous
distribution of allelic effects. Such an equivalence lends faith in the
step-wise mutation model as a more realistic model even though it
may not have any intrinsic biological interest.

6. Equilibrium with a Finite Number of Alleles

Let us now consider, for m=1, a finite number (2k+1) alleles
Ax, Ag-1),.... A1 Ao Al ..., Ax-1) Ax at each locus. The
change in the frequency of i-th allele then becomes

Axl(t _ _v[m(t) { 1- Xk(t)+2)Lk(t)} _ xm(t)-; x,_‘l(t)]

2

k k k
+ sx,(t) z a’i’xy(t+ 2 2 ajx(t)| - a’’- 2ai 2 ajx,(t)
. sk - j--k -k (20)

When the population reaches equilibrium. Axy(t) = 0 giving

;:1— x, for each i, the equilibrium mean is zero and we have with
k

xo+22 X = 1,

i=1

A A k .
A A Xie1+ X : A
vi x%(1- X)) “—12—11] = s% LZ a’j® xy- aziz]. i=0, 1,2, ...k
=k

(21)
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This general result can be studied either for a general k-value
or for each value of k separately.

In the former case, equation (21) can be ré-afranged to give

(22)

’

A A A AR 23 A
(XK1= 2Xi+ X))+ 2XXy= v [a’i?- of] X,

.
where o} is the haploid equilibrium variance at the locus, being —25
and is therefore given by

of = azziéxi= azE i* %
] ]

(23)
The first term on th_e left of (22) can be approximated as (112);(1 so
as to give the following differential equation l
dz
1y 2[ Xyt —(ofl— a 12)] x=0 243

For the infinitely many alleles case, there is no term involvmg
xk in this equation which then reduces to Weber equation given by
Kimura (1965) for the continuum-of-alleles model. The solution of
the differential equation, in this case, gives rise to a normal
distribution for equilibrium allele frequency given by

A 1 a’i?
Xy = ——=31/2 €XP 2

(2not) L 20k (25)

This result of Kimura [7] is, howéver, true Yor a2 << (v/2s) when
we have weak selection and mutatlon is a much stronger force. If
we put

. v ‘
B= (2sa2)' . (26)

this condition becomes B >>1. The equilibrium value of og is then
approximately
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v 1/2
og(GA) = ( a’ ZS) :
1/2
= (a2 —ZSX) = 2a’ vf
where GA in parenthesis stands for ‘Gaussian Approximation
| Expressing in units of 4aZ,

o> (GA) vB - o
4a’® 2 . (27)

The house-of-cards approximation due to Turelli [22] in which

. selection is a much stronger force than mutation, is based on the

reverse condition of a? >> (v/2s) ie. B << 1 and leads to the

" equilibrium genetic variance

 G3(HCA) = &

where HCA in parenthesis stands for ‘House-of-Cards
Approximation’. o

Expressing in units of 4a?

o2 (HCA) e

4a* (28)

which agrees with the result of diallelic case (Bulmer, [3]) as well as
triallelic case (Turelli [22]; Narain & Chakraborty [17]; Slatkin{21]).

(a) Three alleles

For k=1, we have three alleles A_l. Ap, A with respective
equihbrium frequencies x1 = x_l and xo so that in view of
Xo+ 2x1- 1 we have only one unknown say xl to be determined from
equations (21) with k=1 i.e. :

Vixo (1- X1)- X;] = SKo [28% Xy |
(29)

V[ﬁl (1- )’El)_ 529] = Sﬁl [23.2 _)IEI— a2]
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Eliminating X, leads to the quadratic equation in ﬁl“ given by
21+ B) xi- (1+ 4B) Xy+ p = O | (30)

This gives two roots

A (1+4B) = (1+ 86H"2
1 4 (1+ B) | (31)

the permissible root being one with ﬁ, s % otherwise §0 would be
negative. ‘

FoB<<'1, we have approximately one permissible root as

v
2sa’ (32)

Xy = B=

The equilibrium genetic variance at the tri-allelic locus can then
be shown to be equal to

32 = 2a’ [J'Eo (1- Xo)+ 4x, ;Ll]

- 4aly, =2V
- 1% (33)
Expresséd in units of 4a?,
Ao
(e} A
im X
I
2sa’
= B (34)

The heterozygosity in this case is given by
He = 24 (2- 3p)
= 48 (35)
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For n loci, under the assumption of approximate global linkage
equilibria, we then have ‘

n . 13
VeZ 43 vi(dhrod) = Y 2(w/s)
1=1 S el i (36)
In the notation of Turelli [22], Vs = o0&+ 02 = 1/2s so that (36)
cdrresponds exactly to the relation (3. 29) of his paper. Further, the

condition B << 1 amounts to v<< 2sa’ = a%/V, which corresponds
exactly to the relation (3.27) in Turelli [22]. This is the same
condition which leads to the house-of-cards approximation already
stated in (28). As such, the analysis of a model with tri-allelic loci
reported in Turelli [22], giving the house-of-cards prediction for the
equilibrium genetic variance, happens to be a particular case of the
step-wise discrete mutation model with m=1 and k=1.

(b) Five alleles

For k = 2, we have now five allelcs A_2. A—A AQ A and A, with
respective equilibrium ﬁequencies X2 = Xg, X1= X1 and xo so.that
in view of

Xo+ 20X+ Xg) = 1, - ' (37)

we have two unknowns say x; and X, to be determined from
equations (21) with k = 2 L.e.

VIXo (1- Xg)- X;] = 8%o [ 282 ( X1+ 4%p)] (38)

vL;’E, (1- Xo)- ‘;’”] = sx; [2a® X1+ 4:?2)_- a?] (39)
-I\ A ﬁ A 2 A A ~ 2

vL‘xz (1- Xg)- 2] 8X, [2a° (X;+ 4Xp)- 4a”] (40)

Expressing §o in terms of )’El and ﬁg in (38), gives

2%+ 2(B+ 4) X% + 2(B+ 5) XiXo (1+ 38) Xy ~ (4+ 3) Xg+ = O
(41)
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whereas from (40), ﬁl can be expresséd in terms of }’EQ as

A (B+2) Ko - B+ 4) |
X1 = B A . (42)
D) + Xo i

LEliminating §i between (41) and (42) leads to a cubic equation
in x5 given by .

4(B"+ 68% 12B+ 12) X3 - 2(68% 23p% 20B+ 12) 22

+ B(9B%+ 14+ 4) X- B = 0O (43)

We examine the positive and permissible roots of this equation
' which are consistent with (37). It is obvious from (37) that, in order
that x; should be positive, the sum of the roots, X and X5 should be
less than 0.5. This is satisfied for that pair of roots, out of the two
possible pairs, for which x; has a valug less than 0.5. This therefore,
~ gives rise to only one unique root for x; and ﬁz. For different values
of § say from $=0.02 to B=100, such values of the roots as well as
the corresgonding genetic variance in equilibrium, expressed in
units of 4a® and given by : _

A

0'2 A A
y=—E = X1+ 4%,

4a

(44)
are worked out numerically. The heterozygosity given by
Ho= 1-x3- 20 + x3) . (45)

is also determined numerically. The results are given in Table 1.

It is apparent from this table that the equilibrium genetic
variance is close to § only when g is very small. The value of B as we
have seen is the genetic variance with three alleles as well as under
house-of-cards approximation given by Turelli[22]. In fact for B close
to zero, this result holds almost exactly for five alleles also. But when
p takes moderate values greater than 0.1 but still less than 1.0, the
equilibrium genetic variance under five alleles case is much smaller
than that predicted under three alléle case. For $=0.9, this reduction
is as high as 55 per cent. The results in this table also indicate the

S

R
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Table 1. Gene frequencies, Genetic vartance {Y] and Heterozygosity [He] at

L equilibrium with five alleles
B )’21 ’ .Qz Y . He

0.02 0.0192 0.0001 0.0196 . 0.0746
= 0.03 0.0284 0.0002 0.0293 ~ 0.1082 -
‘ " 0.04 0.0367 | 0.0004 0.0382 0.1395
| 0.05 0.0453 0.0006 0.0475 0.1687 .
0.06 . 0.0531 0.0008 0.0563 0.1959

0.07 0.0608 0.0011 0.0651 0.2213

) ‘ 0.08 0.0681° 0.0014 0.0735 0.2450

} 0.09 0.0751 ~0.0017 0.0818 0.2670
/ 0.10 0.0818 0.0020 .0.0899 0.2876

:‘ 0.20 0.1347 0.0066. 0.1611 0.4322
! 0.30 0.1685 0.0122 0.2172 0.5083"

. . 0.40 0.1906 0.0179 0.2621 0.5513
. ' . 050 0.2053 0.0234 "0.2091 - 0.5773
F ' © 0.60 0.2154 '0.0287 - 0.3302 0.5942
‘ 0.70 0.2226 " 0.0336 .- 0.3569 ' '0.6058

0.80 - 0.2278 0.0381 03803 -0.6141

1N 0.90 0.2316 0.0423 0.4009  0.6203
T 100 0.2344 0.0462 0.4194 0.6250

2.00 0.2427 0.0731 05363 0.6436

2.30 0.2429 0.0784 0.5565 0.6456

2.40 0.2429 0.0800 © 0.5627 0.6462

2.50 " 0.2429 0.0814 0.5686 0.6467

2.60 0.2428 '0.0828 . 0.5742 0.6471

- 3.00 0.2425 0.0878 0.5936 " 0.6486
N 5.00 0.2402 0.1030 0.6522 © 0.6522
- 1000 0.2370 0.1171 0.7053 0.6547
20.00 0.2348 0.1251 0.7353 0.6558

- . © 40.00 , 0.2335 0.1205 0.7513 . 0.6563
60.00 0.2330 0.1309 0.7568 0.6565

| 80.00 0.2328 0.1317 0.7595 . 0.6566
100.00 0.2326 0.1321  0.7612 0.6566
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values of p for which the five alleles case provides values close to the

- house-of-cards approximation by using the criterion that x, must
-be sufficiently small as adopted by Slatkin [21]. With B=1
corresponding to the situation when mutation is a much stronger
force than selection in maintaining the genetic variability, it is found
that the equilibrium frequency of A; (1.e. X;), which usually increases
with f, becomes approximately stationary around g close to 2.5 and
starts decreasing thereafter. The values of X, are now not negligible
and the equilibrium genetic variance for five alleles case is distinctly
different from the three alleles case. This is also not close to vB/2,
the value predicted under the normal approximation due to Kiinura
[7].

(c) More than five alleles

For k>2, the algebraic manipulation of equation (21) becomes

formidable. We therefore have to resort to numerical iterations of
the equations. This was done for k = 3, 4, 5, 6 and 7. The numerical
results for the equilibrium genetic variance (y) and heterozygosity
(He) are shown in Figures 2 and 3 using a log scale for . The graphs
for k =1 and 2 corresponding to 3 and 5 alleles cases are also drawn
for the sake of comparison.

Itis apparent from Figure 2 that in ali the cases of 3 to 15 alleles
considered, the equilibrium genetic variarnce increases with increase
in the value of p. Initially, for smaller values of B, such increases are
linear with a slope equal to B itself irrespective of the number of
alleles. This confirms the contention of Turelli [22]. But for higher
values of B, the curves are characteristic in increases and depend
on the number of alleles considered. The  curve for 3 alleles case
departs from the rest of the curves arousid = 0.1. The curve for 5
alleles case departs from the rest of 5 Gurves for 7, 9, 11, 13'and 15
alleles at around B = 0.5. A similar pattern is observed as we move
on to curves for higher number of alleles. After the bifurcation each
curve increases in a characteristic manner. In the literature B=1.0
is taken as the threshold below which, two alleles approximation
holds and above which normal approximation is assumed. Our
results however show that close to B=1, even three alleles
approximation differs from the two alleles one and there are
significant variations in the behaviour above p=1. The highestvalues
are found for the 15 alleles case and the lowest for the 3 alleles case,
The values for k=7 corresponding to 15 alleles case indicate
closeness to the limiting value of VB /2 given by Kimura [7].
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To sée it more clearly we present the variation in equilibrium’
variance with increase in the number of alleles for a few selected
values of § in Table 2.

Table 2. Equilibrium genetic variance [y] and heterozygosity [He] for different
number of alleles at few selected values of §

Number B
of alleles
0.1 1.0 5.0 20.0 50.0 . 100.0
3 0.0820  0.2500  0.2843 0.2007  0.29020  0.2925
0.2876 0.6250 0.8522 0.6558 0.6564 0.8566
5 0.0000  0.4194  0.6522 0.7353  0.7546  0.7612
0.2939 0.6934 0.7651 0.7799 0.7828  0.7837
. 0.0901 0.4603  0.9330 1.2573 ~ 1.3563 ' 1.3929
0.2940 0.7001 0.7984 0.8304 0.8373 0.8395
o - 0.0902  0.4647 1.0510 1.7171 2.0151. 2.1412
0.2940 0.7004 0.8058 0.8530 0.8658 . 0.8703
11 0.0902  0.4649 1.0803 . 2.0090 2.6128  2.9249
0.2940 0.7005 0.8070 0.8617 -0.8811 0.8885
13 0.0902 0.4649 1.0852 2.1426 3.0511 3.6407 "
0.2840 0.7005 0.8071 0.8644 0.8886 0.8993
15 0.0902  0.4649. 1.0858 2.1885  3.3086 . 4.2018
0.2940 0.7005 0.8071 0.8650 0.8917 0.9053

The figures in bold face refer to heterozygoslt}; [Hel

The equilibrium variance of 0.46 for 15 alleles when f is 1.0 is
close to VB /2=0.50 as predicted under the infinite alléles-case by
Kimura [7]. Similarly, for § as high as 100.0, the variance for 15
alleles is 4.20, smaller than VB/2=5.0. The difference;-however, is
not very great.

In so far as heterozygosity is concerned, Figure 3 indicates
clearly that it also increases with the increase in the value of § but
in a characteristic manner depending on the number of alleles.
Initially, the increase is rapid and does not depend on the number
of alleles considered. But for higher values of g, the curves behave
- in a characteristic manner. The pattern of one curve bifurcating from
the rest of the remaining curves at a particular value of § noticed
for the equilibrium genetic variance is also observed for the
heterozygosity The curves seem to stabilize at the values depending
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upon the number of alleles considered. This can also be seen from
Table 2. For instance, when we consider 7 alleles, the heterozygosity
is close to 83-84 per cent for p lying between 20 and 100. For the 3
alleles case, however, it is around 66 per cent for the same range of
values of . When we consider smaller values of f§ say p=0.1, the
heterozygosrty is 29 per cent throughout, irrespective of the number
of alléles considered.

7. Discussion

The dynamics of genetic variability for quantitative traits is an -
outstanding problem for which various mathematical models have
been invoked and alternative approximations have been discussed.
Mutation-selection equilibria in such a case determined so far
assume either two alleles per locus or an infinitely large number of
alleles per locus, with either continuous or discrete allelic effects.
Different approxisations lead to different results and their relative
merits depend on empirical results pertaining to the magnitude of
mutation rates/and selection coefficients for quantitative characters
as well as to the distribution of effects of mew mutation. In this
context recently interest has been’ gener:r\ted on the step-wise
discrete mutation model [Narain & Chakraborty (16](17] J; Slatkin -
[21] in which at the underlying locus, an infinite or finite number
ofalleles A, (i=0, + 1, = 2, . . .) is possible with allele A, having additive
effect ai on a quantitative character and mutation occurs according
to a shifted binomial distribution. While studying such a model with
stabilizing selection, Narain & Chakraborty [17] could reproduce the
results of Turelli [22] based on house-of-cards approximation by
considering three alleles at each locus. In this paper, this approach
has been extended up to fifteen alleles case.

The numerical résults obtained here are more general— in that-
these are not restricted to a given number of alleles and cover all
the cases of selection, weak or strong. When the selection is stronger
than mutation i.e.  <<1, and we consider five alleles case, we find
from Table 1 that the equilibrium frequency of xz is very close to
zero and the five alleles case reduces to the three alleles case. The
equilibrium genetic variance is found to be close to the value of
which it should take from (34). This is also found to be true for the
cases of 7 to 15 alleles. In fact, when the force of selection is quite
strong, no more than two alleles can segregate at the locus. These
results, as already noted, are similar to those of Turelli [22] who
used ‘house-of-cards’ approximation after Kingman's [8]
house-of-cards model of mutation to produce results of Kimura [7]
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and of three alleles approximation Since the equilibrium genetic
variance is found to be the same as with two alleles case, he came
to the conclusion that the variance at equilibrium is independent of -
the number of alleles considered. Our results confirm this
conclusion. But when f takes larger values, we find that we carinot
afford to neglect frequency of alleles other than x; at equilibrium. .
The five or more alleles case cannot then reduce to the three alleles
case. The equilibrium genetic variance is now Jower than 8
substantially.

The five alleles approximation of Slatkin [21] is based on the
situation when selection and mutation balance in such a manner
that x2<<l at equilibrium. In the present paper, this restriction is
not imposed to solve the set of recurrence relations. We are therefore
able to extend Slatkin's [21] analysis and get results as presented
in Table 1 for the intermediate situation of selection when both the
forces are of comparable magnitude. For such a case, if we assume
that x2 << lat equmbrium as in Slatkin [21] we reproduce, using
(38)-(40), .his results for xl which clearly increases from a smaller
value to about 0.23. But as against Slatkin’s [21] analysis in terms
of bounds of Xy, x; and (v/s), we havé¢ now numerical results
indicating how the equilibrium genetic variance behaves as P
changes. This seems to point out that the number of alleles:
considered at each locus could be a crucial factor in mutation-
selection balance equilibria unless § is very small.

. For higher values of B, the genetic variance increases with the
number of alleles, and approaches asymptotically the value
predicted under the infinite alleles case. The equilibrium
heterozygosity in such a case also increases. For $=100.0 and 15
alleles, as seen from Table 2, it can be as high as 90 per cent.

. The results obtained in this paper thus indicate how the
approximate solutions of Kimura [7], Turelli [22], Narain &
Chakraborty [17] and Slatkin [21] fit in the general case of any
number of alleles and weak as well as strong selection.
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